Share Email Print

Proceedings Paper

Demonstration of input wavelength flexible cascaded Raman resonators based on the inclusion of a broadband distributed feedback reflector
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Cascaded Raman fiber lasers are agile and scalable offering high optical powers at various wavelength bands inaccessible with rare-earth doped fiber lasers. Although several architectures for building cascaded Raman lasers exist, only the use of cascaded Raman resonators (CRRs) provide a high degree of power-independent wavelength conversion. A cascaded Raman resonator comprises of nested cavities built with two sets of high reflectivity fiber Bragg gratings at fixed Stokes wavelengths and thus can be used only for a fixed input wavelength; thereby restricting its use to a specific Ytterbium-doped fiber laser. The need for fabricating separate grating sets for each input wavelength compromises the simplicity and cost-effectiveness of this technique. Here, we demonstrate through experiment and simulations that the simple inclusion of a distributed broadband reflector at the first-order Stokes component along with the grating sets makes the CRR module very flexible to the input wavelengths, with remarkable improvement in efficiency over a widerange of inputs. In our experiment, a 17W Ytterbium-doped fiber laser tunable from 1055nm to 1080nm is used to pump a CRR module designed for an input wavelength of 1117nm and output wavelength of 1480nm. In conventional operation, for a non-resonant pump input into the CRR, nearly all the output was still unconverted pump. However, with the addition of the broadband distributed feedback reflector for the first-order Stokes component we achieved the 6thorder Stokes at 1480nm over the entire tuning range with a significant improvement in conversion ranging from ~33% to 86% of output at 1480nm.

Paper Details

Date Published: 4 March 2019
PDF: 7 pages
Proc. SPIE 10902, Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021D (4 March 2019); doi: 10.1117/12.2509759
Show Author Affiliations
Roopa Prakash, Ctr. for Nano Science and Engineering (CeNSE) (India)
V. Balaswamy, Ctr. for Nano Science and Engineering (CeNSE) (India)
Vishal Choudhury, Ctr. for Nano Science and Engineering (CeNSE) (India)
C. G. Lakshmi, Ctr. for Nano Science and Engineering (CeNSE) (India)
V. R. Supradeepa, Ctr. for Nano Science and Engineering (CeNSE) (India)

Published in SPIE Proceedings Vol. 10902:
Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII
Peter G. Schunemann; Kenneth L. Schepler, Editor(s)

© SPIE. Terms of Use
Back to Top