Share Email Print

Proceedings Paper

Estimating photosynthetically available radiation at the ocean surface from EPIC/DSCOVR data
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) in Lagrange-1 (L1) orbit provides observations of the Earth’s surface lit by the Sun at a cadence of 13 to 22 images/day and optical resolution of 16 km in 10 spectral bands from 317 to 780 nm. The EPIC data collected in the bands centered on 443, 551, and 680 nm are used to estimate daily mean photosynthetically available radiation (PAR) reaching the surface of the global, ice-free oceans. The solar irradiance reaching the surface is obtained by subtracting from the extraterrestrial irradiance (known), the irradiance reflected to space (estimated from the EPIC measurements), while taking into account atmospheric transmission (modeled). Clear and cloudy regions within a pixel do not need to be distinguished, i.e., the methodology is adapted to the relatively large EPIC pixels. A first daily mean EPIC PAR imagery is generated. Comparison with estimates from sensors in polar and geostationary orbits, namely MODIS and AHI, shows good agreement, with coefficients of determination of 0.79 and 0.92 and RMS differences of 8.2 and 5.7 E/m2/d, respectively, but overestimation by 1.08 E/m2/d (MODIS) and 3.44 E/m2/d (AHI). The advantages of using observations from L1 orbit are: 1) the daily cycle of cloudiness is well described (unlike from polar orbit) and 2) spatial resolution is not significantly degraded at high latitudes (unlike from geostationary orbit). The methodology can be easily extended to estimate ultraviolet (UV) surface irradiance using the spectral bands centered on 317, 325, 340, and 388 nm, all the more as ozone content, a key variable controlling atmospheric transmittance, is retrieved from the measurements.

Paper Details

Date Published: 24 October 2018
PDF: 11 pages
Proc. SPIE 10778, Remote Sensing of the Open and Coastal Ocean and Inland Waters, 1077806 (24 October 2018); doi: 10.1117/12.2501675
Show Author Affiliations
Robert Frouin, Scripps Institution of Oceanography (United States)
Jing Tan, Scripps Institution of Oceanography (United States)
Didier Ramon, HYGEOS, Euratechnologies (France)
Bryan Franz, NASA Goddard Space Flight Ctr. (United States)
Hiroshi Murakami, Japan Aerospace Exploration Agency (Japan)

Published in SPIE Proceedings Vol. 10778:
Remote Sensing of the Open and Coastal Ocean and Inland Waters
Robert J. Frouin; Hiroshi Murakami, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?