Share Email Print

Proceedings Paper

Phase retrieval algorithm for line-scan dispersive interferometry
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The line-scan dispersive interferometry (LSDI) benefits from single-shot measurement in nature and has potential to perform in-line surface metrology. In this technique, the interference beam produced by the two arms of the interferometer is spatially dispersed by a diffraction grating along the rows (or columns) of the CCD pixels. In which case, a two-dimensional spectral interferogram is generated. In this paper, fringe order determination is carried out to retrieve the more accurate phase information along the chromaticity axis of the interferogram and then the height map of the tested profile can be calculated with high resolution. Two standard artefacts have been evaluated using the developed LSDI and the experimental results are compared with that of phase slope method as well as the commercial instrument (Talysurf CCI 3000), which shows that better performance in measurement noise is achieved. Additionally, the measurement repeatability is significantly improved and demonstrated within sub-nanometer range.

Paper Details

Date Published: 24 July 2018
PDF: 6 pages
Proc. SPIE 10827, Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), 108270F (24 July 2018); doi: 10.1117/12.2500918
Show Author Affiliations
Dawei Tang, Univ. of Huddersfield (United Kingdom)
Prashant Kumar, Univ. of Huddersfield (United Kingdom)
Feng Gao, Univ. of Huddersfield (United Kingdom)
Xiangqian Jiang, Univ. of Huddersfield (United Kingdom)

Published in SPIE Proceedings Vol. 10827:
Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018)
Yingjie Yu; Chao Zuo; Kemao Qian, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?