Share Email Print

Proceedings Paper

A turbulence image restoration approach for visual inspection of nuclear power plants
Author(s): Wenjun Chen; Zhen Zhang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Visual inspection is a common procedure during outages of nuclear power plants. For the underwater visual inspection of the nuclear plant reactor after fuel reloading, the water turbulence generated by nuclear fuel assemblies can seriously degrade the quality of video. Online image restoration is required in order to meet the need of minimizing the duration of visual inspection. The paper proposes a new method to solve the image degradation and to realize online image restoration when visual inspection. First, the image degradation model is founded. In the model that water turbulence weakly satisfies a Laplacian distribution, it is demonstrated in the paper that the geometric distortion can be removed and a corrected image can be recovered. Then the image is partitioned into small patches which have partly overlapping between adjacent areas. Image quality assessment is used to make phases of image patches homomorphism. Image quality index method is used to image quality measurement in practice. Moreover, the phase average patches combine into a new image. At last the wiener filter is used to estimate the image which would have been observed without turbulence. The experimental result shows that the method can well realize restoration of images affected by turbulence and obtain a satisfactory effect, which can help the operator to carry out the visual inspection which underwater camera is used to achieve more accurate operation information of the fuel reloading.

Paper Details

Date Published: 24 July 2018
PDF: 6 pages
Proc. SPIE 10827, Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), 108271G (24 July 2018); doi: 10.1117/12.2500522
Show Author Affiliations
Wenjun Chen, Shanghai Univ. (China)
Zhen Zhang, Shanghai Univ. (China)

Published in SPIE Proceedings Vol. 10827:
Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018)
Yingjie Yu; Chao Zuo; Kemao Qian, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?