Share Email Print

Proceedings Paper

Segmented adaptive optic mirrors for laser power beaming and other space applications
Author(s): Harold E. Bennett
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In order to effectively beam laser power into space to power satellites or to remove space debris in mid or high earth orbit very large mirrors (perhaps 12 m in diameter or more) and an adaptive optic systems to penetrate the atmosphere are required. Mirrors with adaptive optic segment sizes less than the equivalent. Fried coefficient for atmospheric turbulence (typically 3 - 5 cm at zenith in the visible region of the spectrum) are optimum for atmospheric penetration. These new mirrors may have hundreds of thousands of segments. The behavior of such mirrors under high powered laser irradiation is not clear, although for a large mirror both average and peak irradiation levels will be very low. Attention must be paid to penetration of laser energy into the gaps between segments and to the cumulative effect of edge diffraction. These problems do not appear to be severe and this new class of optics appears to offer us new possibilities for use in space. It may change the way in which we look at telescopes for space applications.

Paper Details

Date Published: 27 May 1996
PDF: 20 pages
Proc. SPIE 2714, 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, (27 May 1996); doi: 10.1117/12.240355
Show Author Affiliations
Harold E. Bennett, Bennett Optical Research Inc. (United States)

Published in SPIE Proceedings Vol. 2714:
27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995
Harold E. Bennett; Arthur H. Guenther; Mark R. Kozlowski; Brian Emerson Newnam; M. J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?