Share Email Print

Proceedings Paper

Operator in-the-loop control of rotary cranes
Author(s): Gordon G. Parker; Rush D. Robinett III; Brian J. Driessen; Clark R. Dohrmann
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical pendulum with an attached payload. The crane operator positions the payload by issuing a combination of translational and rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying and exhibit low natural frequencies. Maneuvers are therefore performed at rate sufficiently slow so as not to excite oscillation. The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a three-axis rotary crane where the residual sway magnitude is reduced in excess of 40 dB.

Paper Details

Date Published: 1 May 1996
PDF: 9 pages
Proc. SPIE 2721, Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, (1 May 1996); doi: 10.1117/12.239148
Show Author Affiliations
Gordon G. Parker, Sandia National Labs. (United States)
Rush D. Robinett III, Sandia National Labs. (United States)
Brian J. Driessen, Sandia National Labs. (United States)
Clark R. Dohrmann, Sandia National Labs. (United States)

Published in SPIE Proceedings Vol. 2721:
Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies
C. Robert Crowe, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?