Share Email Print

Proceedings Paper

Constrained layer damping system for box beams
Author(s): Michael L. Drake; David M. Hopkins; Christopher Stack
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper discusses the results of a project aimed at developing an effective constrained layer damping system for a large steel box beam. The primary box beam evaluated was a 4.0-inch by 8.0-inch by 0.375-inch section box which was 96.0 inches long. The goal of the project was to obtain the most damping possible in the bending, twisting, and axial modes while meeting cost, weight, and installation requirements. The project started with the evaluation of the box beam as an appropriate solid beam with a continuous constrained layer damping system applied using a 6th order theory analysis program. The next analysis step was to advance to finite elements. During the FEA, bending modes in both planes, twisting modes, and axial modes were examined. The design iterations considered damping on the 8.0-inch surfaces only, damping on all surfaces, the effects of a standoff, and multiple segmentation in the constraining layer. After the analysis had developed the best damping configuration which met all the nondamping requirements, the damping system was fabricated and installed on the box beam for testing. This paper presents the results of the project from concept development through the test results.

Paper Details

Date Published: 1 May 1996
PDF: 11 pages
Proc. SPIE 2720, Smart Structures and Materials 1996: Passive Damping and Isolation, (1 May 1996); doi: 10.1117/12.239114
Show Author Affiliations
Michael L. Drake, Univ. of Dayton Research Institute (United States)
David M. Hopkins, Univ. of Dayton Research Institute (United States)
Christopher Stack, Naval Surface Warfare Ctr. (United States)

Published in SPIE Proceedings Vol. 2720:
Smart Structures and Materials 1996: Passive Damping and Isolation
Conor D. Johnson, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?