Share Email Print

Proceedings Paper

Smart bridge and building materials in which cyclic motion is controlled by internally released adhesives
Author(s): Carolyn M. Dry
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The object of this research is to assess the feasibility of using the concept of self-healing concretes for structural highway elements such as bridges, and roadway pavements. Our research has concentrated on the material behavior of self-healing cements which internally release adhesive when crack damage occurs. The focus of this research is on the use of self- healing concretes in structural highway members, such as bridges, that may be damaged by dynamic events such as earthquakes, impacts. A following study will investigate the influence of different types of adhesives and release mechanisms in the concrete elements under several load histories, for self-healing of the structural element. In the experimental program, the first set of specimens used typical elements, such as frames containing adhesive loaded fibers. The results were positive. From there we next go on to joints containing several types of adhesives and release mechanisms. These are tested on a small shake table in which actuators, load sensors, and a deflection monitor are mounted on a base. The adhesives have different set times, strength of bond with the matrix, and elastic moduli. The specimens are tested for the effect of adhesive type on deflection, stiffness, and damping of the members.

Paper Details

Date Published: 22 April 1996
PDF: 8 pages
Proc. SPIE 2719, Smart Structures and Materials 1996: Smart Systems for Bridges, Structures, and Highways, (22 April 1996); doi: 10.1117/12.238847
Show Author Affiliations
Carolyn M. Dry, Univ. of Illinois/Urbana-Champaign (United States)

Published in SPIE Proceedings Vol. 2719:
Smart Structures and Materials 1996: Smart Systems for Bridges, Structures, and Highways
Larryl K. Matthews, Editor(s)

© SPIE. Terms of Use
Back to Top