Share Email Print

Proceedings Paper

Generalized matched-filter method with application to ultrasonic deepest probing of dispersive biophysical structures with large attenuation coefficient on basis of ALARA criterion
Author(s): Alexander M. Akhmetshin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The work is devoted to research of new methods of ultrasonic deep probing of dispersive structures with large attenuation coefficient (DSLAC) at minimum radiation power. In conventional systems of medical introscopy, a depth of probing is limited by small energy of simple pulse signals. One could think that using the long probing complex signals with small magnitude with receiver's signal compression by means of matched ifiter (MF) for maximization both of SNR and resolving power (as is the case of ordinary radar or sonar systems) would be the simplest way for solving the problem. However, the MF-method is not realizable when probing DSLAC because a law of signal's shape distortion by structure remains unknown. The generalized matched-filter method (GMFM) allows to ensure the deepest probing of a DSLAC with arbitrary law of a signal distortion by structure. GMFM is based on probing a DSLAC with signals that represent the DSLAC's eigenfunctions whose shapes are not distorted by the DSLAC. It allows to increase energy potential, sensitivity and accuracy of medical ultrasonic introscopy. Keywords: energy, depth, sensitivity, accuracy, attenuation, optimum ifitering, ALARA-criterion, eigenftinctions.

Paper Details

Date Published: 11 April 1996
PDF: 9 pages
Proc. SPIE 2708, Medical Imaging 1996: Physics of Medical Imaging, (11 April 1996); doi: 10.1117/12.237830
Show Author Affiliations
Alexander M. Akhmetshin, Dniepropetrovsk State Univ. (Ukraine)

Published in SPIE Proceedings Vol. 2708:
Medical Imaging 1996: Physics of Medical Imaging
Richard L. Van Metter; Jacob Beutel, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?