Share Email Print

Proceedings Paper

Strain analysis of ionic polymer-metal composite cantilever actuator using DIC method
Author(s): Hongguang Liu; Wenjie Qian; Lei Chen; Jianguo Zhu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Ionic polymer–metal composite (IPMC) cantilever actuator demonstrates significant bending deformation upon application of excitation voltage across electrodes without external load. In the present work, the non-contact digital image correlation (DIC) and a digital microscope were used to investigate the micro-scale displacement and strain distributions on the cross section of the actuator under excitation voltages, according to the low mass and film properties of IPMC material. The target surface of the fabricated IPMC sample with Pt electrodes was roughened with fine sandpapers to prepare an appropriate speckled surface. The experimental results indicate that longitudinal normal strain is linearly distributed along the thickness direction and strain gradient of longitudinal normal strain varies linearly with electric field. The longitudinal and transverse normal strains decrease with the increase of the frequency of the excitation voltage. Moreover, due to water loss of the sample in air, the IPMC actuator demonstrates contractive deformation when exposed in the air. The micro scale DIC technique has been proved to have excellent accuracy over a large range of strains, thus is very powerful for mechanical analysis of IPMC materials.

Paper Details

Date Published: 24 July 2018
PDF: 6 pages
Proc. SPIE 10827, Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), 1082703 (24 July 2018); doi: 10.1117/12.2326960
Show Author Affiliations
Hongguang Liu, Jiangsu Univ. (China)
Wenjie Qian, Jiangsu Univ. (China)
Lei Chen, Jiangsu Univ. (China)
Jianguo Zhu, Jiangsu Univ. (China)

Published in SPIE Proceedings Vol. 10827:
Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018)
Yingjie Yu; Chao Zuo; Kemao Qian, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?