Share Email Print

Proceedings Paper

Improvement of persistent tracking in wide area motion imagery by CNN-based motion detections
Author(s): Christine Hartung; Raphael Spraul; Wolfgang Krüger
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Reliable vehicle detection and tracking in wide area motion imagery (WAMI), a novel class of imagery captured by airborne sensor arrays and characterized by large ground coverage and low frame rate, are the basis for higher-level image analysis tasks in wide area aerial surveillance. Possible applications include real-time traffic monitoring, driver behavior analysis, and anomaly detection. Most frameworks for detection and tracking in WAMI data rely on motion-based input detections generated by frame differencing or background subtraction. Subsequently employed tracking approaches aim at recovering missing motion detections to enable persistent tracking, i.e. continuous tracking also for vehicles that become stationary. Recently, a moving object detection method based on convolutional neural networks (CNNs) showed promising results on WAMI data. Therefore, in this work we analyze how CNN-based detection methods can improve persistent WAMI tracking compared to detection methods based on difference images. To find detections, we employ a network that uses consecutive frames as input and computes detection heatmaps as output. The high quality of the output heatmaps allows for detection localization by non-maximum suppression without further post processing. For quantitative evaluation, we use several regions of interest defined on the publicly available, annotated WPAFB 2009 dataset. We employ the common metrics precision, recall, and f-score to evaluate detection performance, and additionally consider track identity switches and multiple object tracking accuracy to assess tracking performance. We first evaluate the moving object detection performance of our deep network in comparison to a previous analysis of difference-image based detection methods. Subsequently, we apply a persistent multiple hypothesis tracker with WAMI-specific adaptations to the CNN-based motion detections, and evaluate the tracking results with respect to a persistent tracking ground truth. We yield significant improvement of both the motion-based input detections and the output tracking quality, demonstrating the potential of CNNs in the context of persistent WAMI tracking.

Paper Details

Date Published: 9 October 2018
PDF: 10 pages
Proc. SPIE 10789, Image and Signal Processing for Remote Sensing XXIV, 107890Q (9 October 2018); doi: 10.1117/12.2325367
Show Author Affiliations
Christine Hartung, Fraunhofer IOSB (Germany)
Raphael Spraul, Fraunhofer IOSB (Germany)
Wolfgang Krüger, Fraunhofer IOSB (Germany)

Published in SPIE Proceedings Vol. 10789:
Image and Signal Processing for Remote Sensing XXIV
Lorenzo Bruzzone; Francesca Bovolo, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?