Share Email Print

Proceedings Paper

Reducing permeability of indium tin oxide contacts to improve thermal stability in perovskite solar cells (Conference Presentation)
Author(s): Caleb Boyd; Rongrong Cheacharoen; Kevin A. Bush; Rohit Prasanna; Tomas Leijtens; Michael D McGehee

Paper Abstract

Hybrid organic-inorganic lead halide perovskite solar cells have made rapid advancements in efficiency, approaching and overtaking those of other thin-film technologies. Before commercialization can be achieved, however, the stability of perovskite solar cells must be improved. While moisture exposure can be mitigated through careful encapsulation, the thermal stability of the cell, with respect to both intrinsic degradation of the absorber material and extrinsic reactions with other layers, is critical. We evaluate thermal stability of semitransparent FA0.83Cs0.17Pb(I0.83Br0.17)3 and MAPbI3 perovskite solar cells at 85C in a nitrogen environment for up to 1000 hours and show that the primary factor in cell degradation is reaction with a metal contact. Using depth profiling in x-ray photoelectron spectroscopy, we show that silver contacts not only create a driving force for iodine migration from the perovskite, but also surprisingly have the potential to diffuse through a sputtered tin-doped indium oxide (ITO) window layer, an atomic layer deposited (ALD) tin oxide layer, and an evaporated fullerene electron transport layer into the perovskite, harming the performance of the perovskite solar cell. The poor barrier quality of the transparent conducting oxide (TCO) is due largely to diffusion channels in domain boundaries created by a proliferation of the existing rough perovskite morphology, shown with scanning electron microscopy (SEM). We investigate several solutions, including spin-coating the fullerene layer and using amorphous indium zinc oxide (IZO) as an alternative TCO. We discuss the performance and viability of each solution as well as implications for perovskite solar cell design.

Paper Details

Date Published: 18 September 2018
Proc. SPIE 10759, New Concepts in Solar and Thermal Radiation Conversion and Reliability, 1075903 (18 September 2018); doi: 10.1117/12.2322658
Show Author Affiliations
Caleb Boyd, Stanford Univ. (United States)
Rongrong Cheacharoen, Stanford Univ. (United States)
Kevin A. Bush, Stanford Univ. (United States)
Rohit Prasanna, Stanford Univ. (United States)
Tomas Leijtens, Stanford Univ. (United States)
Michael D McGehee, Stanford Univ. (United States)

Published in SPIE Proceedings Vol. 10759:
New Concepts in Solar and Thermal Radiation Conversion and Reliability
Jeremy N. Munday; Peter Bermel; Michael D. Kempe, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?