Share Email Print

Proceedings Paper

Towards a 2D printer: a deterministic cross contamination-free transfer method for atomically layered materials (Conference Presentation)
Author(s): Rohit Hemnani; Rishi Maiti; Caitlin Carfano; Mohammad H. Tahersima; Volker J. Sorger

Paper Abstract

Precision and chip contamination-free placement of two-dimensional (2D) materials is expected to accelerate both the study of fundamental properties and novel device functionality. Current transfer methods of 2D materials onto an arbitrary substrate deploy wet chemistry and viscoelastic stamping. However, these methods produce a) significant cross contamination of the substrate due to the lack of spatial selectivity b) may not be compatible with chemically sensitive device structures, and c) are challenged with respect to spatial alignment. Here, we demonstrate a novel method of transferring 2D materials resembling the functionality known from printing; utilizing a combination of a sharp micro-stamper and viscoelastic polymer, we show precise placement of individual 2D materials resulting in vanishing cross contamination to the substrate. Our 2D printer-method results in an aerial cross contamination improvement of two to three orders of magnitude relative to state-of-the-art dry and direct transfer methods. Moreover, we find that the 2D material quality is preserved in this transfer method. Testing this 2D material printer on taped-out integrated Silicon photonic chips, we find that the micro-stamper stamping transfer does not physically harm the underneath Silicon nanophotonic structures such as waveguides or micro-ring resonators receiving the 2D material. Such accurate and substrate-benign transfer method for 2D materials could be industrialized for rapid device prototyping due to its high time-reduction, accuracy, and contamination-free process.

Paper Details

Date Published: 18 September 2018
Proc. SPIE 10730, Nanoengineering: Fabrication, Properties, Optics, and Devices XV, 1073015 (18 September 2018); doi: 10.1117/12.2322075
Show Author Affiliations
Rohit Hemnani, The George Washington Univ. (United States)
Rishi Maiti, The George Washington Univ. (United States)
Caitlin Carfano, The George Washington Univ. (United States)
Mohammad H. Tahersima, The George Washington Univ. (United States)
Volker J. Sorger, The George Washington Univ. (United States)

Published in SPIE Proceedings Vol. 10730:
Nanoengineering: Fabrication, Properties, Optics, and Devices XV
Balaji Panchapakesan; Anne E. Sakdinawat; André-Jean Attias; Elizabeth A. Dobisz, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?