Share Email Print

Proceedings Paper

Nanostructured epitaxial graphene for ultra-broadband optoelectronic detectors (Conference Presentation)
Author(s): Abdel El Fatimy; Luke St. Marie; Anindya Nath; Byoung Don Kong; Anthony K. Boyd; Rachael L. Myers-Ward; Kevin M. Daniels; M. Mehdi Jadidi; Thomas E. Murphy; D. Kurt Gaskill; Paola Barbara

Paper Abstract

Atomically thin materials like semimetallic graphene and semiconducting transition metal dichalcogenides (TMDs) are an ideal platform for ultra-thin optoelectronic devices due to their direct bandgap (for monolayer thickness) and their considerable light absorption. For devices based on semiconducting TMDs, light detection occurs by optical excitation of charge carriers above the bandgap. For gapless graphene, light absorption causes a large increase in electron temperature, because of its small electronic heat capacity and weak electron-phonon coupling, making it suitable for hot-electron detectors. Here we show that, by nanostructuring graphene into quantum dots, we can exploit quantum confinement to achieve hot-electron bolometric detection. The graphene quantum dots are patterned from epitaxial graphene on SiC, with dot diameter ranging from 30 nm to 700 nm [1]. Nanostructuring greatly increases the temperature dependence of the electrical resistance, yielding detectors with extraordinary performance (responsivities of 1 × 10^(10) V W^(−1) and electrical noise-equivalent power, ∼2 × 10^(−16) W Hz^(−1/2) at 2.5 K). We will discuss how the dynamics of the charge carriers, namely the hot-electron cooling, affects the device operation and its power dependence. These detectors work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation [2], with a design that is easily scalable for detector arrays. [1] El Fatimy, A. et al. , "Epitaxial graphene quantum dots for high-performance terahertz bolometers," Nature Nanotechnology 11, 335-338 (2016). [2] El Fatimy, A. et al. , "Ultra-broadband photodetectors based on epitaxial graphene quantum dots" Nanophotonics (2018).

Paper Details

Date Published: 18 September 2018
Proc. SPIE 10729, Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz, 1072906 (18 September 2018); doi: 10.1117/12.2321313
Show Author Affiliations
Abdel El Fatimy, Georgetown Univ. (United States)
Luke St. Marie, Georgetown Univ. (United States)
Anindya Nath, U.S. Naval Research Lab. (United States)
Byoung Don Kong, U.S. Naval Research Lab. (United States)
Anthony K. Boyd, U.S. Naval Research Lab. (United States)
Rachael L. Myers-Ward, U.S. Naval Research Lab. (United States)
Kevin M. Daniels, U.S. Naval Research Lab. (United States)
M. Mehdi Jadidi, Univ. of Maryland, College Park (United States)
Thomas E. Murphy, Univ. of Maryland, College Park (United States)
D. Kurt Gaskill, U.S. Naval Research Lab. (United States)
Paola Barbara, Georgetown Univ. (United States)

Published in SPIE Proceedings Vol. 10729:
Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz
Oleg Mitrofanov; Chee Hing Tan; José Luis Pau Vizcaíno; Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?