Share Email Print

Proceedings Paper

A six-apertures discrete beam combiners for J-band interferometry
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The astronomical J-band (1.25 micrometres) is a relatively untapped wave-band in long-baseline infrared interferometry. It allows access to the photosphere in giant and super-giant stars relatively free from opacities of molecular bands. The J-band can potentially be used for imaging spots in the 1350 nm ionised iron line on slowly rotating magnetically-active stars through spectro-interferometry. In addition, the access to the 1080 nanometres He I line may probe out flows and funnel-flows in T-Tauri stars and allow the study of the star-disk interaction.

We present the progress in the development of a six-inputs, J-band interferometric beam combiner based on the discrete beam combiner (DBC) concept. DBCs are periodic arrays of evanescent coupled waveguides which can be used to retrieve simultaneously the complex visibility of every baseline from a multi-aperture interferometer. Existing, planned or future interferometric facilities combine or will combine six or more telescopes at the time, thus increasing the snapshot uv coverage from the interferometric measurements. A better uv coverage will consequently enhance the accuracy of the image reconstruction. DBCs are part of the wider project Integrated astrophotonics that aims to validates photonic technologies for utilisation in astronomy.

Before manufacturing the component we performed extensive numerical simulations with a coupled modes model of the DBC to identify the best input configuration and array length. The 41 waveguides were arranged on a zig-zag array that allows a simple optical setup for dispersing the light at the output of the waveguides.

The component we are currently developing is manufactured in borosilicate glass using the technique of multi-pass ultrafast laser inscription (ULI), using a mode-locked Yb:KYW laser at the wavelength of 1030 nm, pulse duration of 300 fs and repetition rate of 1 MHz. After annealing, the written components showed a propagation loss less than 0.3 dB/cm and a negligible birefringence at a wavelength of 1310 nm, which makes the components suitable for un-polarized light operation. A single mode fiber-to-component insertion loss of 0.9 dB was measured. Work is currently in progress to characterize the components in spectro-interferometric mode with white light covering the J-band spectrum.

Paper Details

Date Published: 9 July 2018
PDF: 10 pages
Proc. SPIE 10701, Optical and Infrared Interferometry and Imaging VI, 1070116 (9 July 2018); doi: 10.1117/12.2312033
Show Author Affiliations
Ettore Pedretti, Leibniz-Institut für Astrophysik Potsdam (Germany)
S. Piacentini, Politecnico di Milano (Italy)
G. Corrielli, CNR-Istituto di Fotonica e Nanotecnologie (Italy)
Roberto Osellame, CNR-Istituto di Fotonica e Nanotecnologie (Italy)
Politecnico di Milano (Italy)
Stefano Minardi, Leibniz-Institut für Astrophysik Potsdam (Germany)

Published in SPIE Proceedings Vol. 10701:
Optical and Infrared Interferometry and Imaging VI
Michelle J. Creech-Eakman; Peter G. Tuthill; Antoine Mérand, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?