Share Email Print

Proceedings Paper

Real space approach to high harmonic generation in solids (Conference Presentation)
Author(s): Harshit Lakhotia; Minjie Zhan; Hee-Yong Kim; Eleftherios Goulielmakis

Paper Abstract

The microscopic electronic arrangement and charge densities defines the physical, optical and chemical properties of the material. The scientific advancement in understanding the arrangement of matter has led to better understanding of both chemical as well as physical aspects of materials. For the bulk periodic or crystalline materials X-ray or electron beams can be used to decipher the crystalline arrangement and thereby map the electron density. However, even with these techniques at hand, the direct visualization of the valence electron densities inside solids remains an insurmountable challenge. Currently the understanding of high harmonic generation(HHG) in solids is mostly limited to dynamic of electron hole pair on the conduction and valence bands of solids however to gain insight into valence charge densities this process needs to explained with real space motion of electrons. Recent efforts in 2D materials have made significant steps in this direction but a sufficiently complete real-space picture is still lacking. We present a real space approach to high harmonic generation in solids in strong field regime. We show that in strong field regime the motion of electron in presence of laser field is mostly governed by it and periodic potential acts as a perturbation to the potential. Solving for equation of motion in presence of these two fields we show the dependence of emitted high harmonic radiation on laser field and potential. All the experimental observations such as cut-off dependence, wavelength dependence, orientation dependence and dependence of emitted intensity on input electric field reconcile with the theoretical prediction, hence bolstering our model. We also predict that such model can be used to reconstruct the valence electron densities for solids.

Paper Details

Date Published: 29 May 2018
Proc. SPIE 10673, Advances in Ultrafast Condensed Phase Physics, 106730M (29 May 2018); doi: 10.1117/12.2309921
Show Author Affiliations
Harshit Lakhotia, Max-Planck-Institut für Quantenoptik (Germany)
Minjie Zhan, Max-Planck-Institut für Quantenoptik (Germany)
Hee-Yong Kim, Max-Planck-Institut für Quantenoptik (Germany)
Eleftherios Goulielmakis, Max-Planck-Institut für Quantenoptik (Germany)

Published in SPIE Proceedings Vol. 10673:
Advances in Ultrafast Condensed Phase Physics
Martin Schultze; Eleftherios Goulielmakis; Thomas Brabec, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?