Share Email Print

Proceedings Paper • Open Access

Low-cost thermal-IR imager for an Earth observation microsatellite
Author(s): Brian D. Oelrich; Craig I. Underwood

Paper Abstract

A new class of thermal infrared (TIR) Earth Observation (EO) data will become available with the flight of miniature TIR EO instruments in a multiple micro-satellite constellation. This data set will provide a unique service for those wishing to analyse trends or rapidly detect anomalous changes in the TIR characteristics of the Earth’s surface or atmosphere (e.g. fire detection). Following a preliminary study of potential mission applications, uncooled commercial-off-the-shelf (COTS) technology was selected to form the basis of a low-cost, compact instrument capable of complementing existing visible and near IR EO capabilities on a sub-100kg Surrey micro-satellite. The preliminary 2-3 kg instrument concept has been designed to yield a 325 m ground sample distance over a 200 km swath width from a constellation altitude of 700 km. The radiometric performance, enhanced with time-delayed integration (TDI), is expected to yield a NETD less than 0.5 K for a 300 K ground scene. Fabrication and characterization of a space-ready instrument is planned for late 2004.

Paper Details

Date Published: 21 November 2017
PDF: 9 pages
Proc. SPIE 10568, International Conference on Space Optics — ICSO 2004, 105680F (21 November 2017); doi: 10.1117/12.2307980
Show Author Affiliations
Brian D. Oelrich, Univ. of Surrey (United Kingdom)
Craig I. Underwood, Univ. of Surrey (United Kingdom)

Published in SPIE Proceedings Vol. 10568:
International Conference on Space Optics — ICSO 2004
Josiane Costeraste; Errico Armandillo, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?