Share Email Print

Proceedings Paper

Nonlinear characteristics of semiconductor laser subject to optical incoherent feedback
Author(s): Shin-Cyuan Chen; You-Peng Hong; Ming-Ju Wu; Yu-Shan Juan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Optical feedback (OF) system plays an important role in nonlinear dynamics because of low cost, less complexity, and well-maintained. Rich nonlinear characteristics of semiconductor laser under optical feedback are investigated, including period-one oscillation (P1), period-two oscillation (P2), quasi-period (QP), and chaotic oscillation (CO) states. However, the stability of the states generated is the most important issue to be solved and improved. In this paper, the polarization rotated feedback is purposed to be an alternative approach that possesses the characteristic of improving the signal quality compared to optical feedback. We focused on the generation of P1 states and on the performance of the noise reduction of the P1 states by utilizing incoherent OF. The polarization rotated feedback system is built up by OF systems under the orthogonally polarized feedback. The optical components that we used in the scheme for generating of the polarization rotated feedback are Faraday rotator (FR) and polarizer to provide the incoherent optical feedback, rich dynamics is obtained compared to those observed in traditional feedback system. Moreover, noise reduction of the P1 states caused by the delay loop frequencies in feedback scheme is realized by applying the orthogonally polarized feedback to the already-generated P1 states by the traditional scheme. To explore the quality of the generated P1 states, the measurements of the amplitude of side peaks, the spectral linewidths, and amplitude variation of P1 states under traditional OF and polarization rotated feedback in both frequency and time domain observed by electrical power spectrum and oscilloscopes are examined and analyzed, respectively. As a result, effective noise reduction in P1 states is achieved while applying a polarization rotated feedback.

Paper Details

Date Published: 9 May 2018
PDF: 6 pages
Proc. SPIE 10682, Semiconductor Lasers and Laser Dynamics VIII, 1068224 (9 May 2018); doi: 10.1117/12.2307589
Show Author Affiliations
Shin-Cyuan Chen, Yuan Ze Univ. (Taiwan)
You-Peng Hong, Yuan Ze Univ. (Taiwan)
Ming-Ju Wu, Yuan Ze Univ. (Taiwan)
Yu-Shan Juan, Yuan Ze Univ. (Taiwan)

Published in SPIE Proceedings Vol. 10682:
Semiconductor Lasers and Laser Dynamics VIII
Krassimir Panajotov; Marc Sciamanna; Rainer Michalzik, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?