
Proceedings Paper
Large-scale parallel simulations of distributed detection algorithms for collaborative autonomous sensor networksFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
A key component of the Third Offset Strategy proposed by the United States Department of Defense is the use of unmanned autonomous systems to deter potential conflicts. Collaborative autonomy technologies are also being explored by the private sector, which is rapidly pushing towards the deployment of self-driving vehicles. For areas affected by disaster, autonomous drone swarms can assist with search and rescue operations by surveilling large regions quickly without exposing emergency responders to risk prematurely. A substantial amount of progress has been made in distributed sensing research over the last few years. However, simulation results for applications that require complex inter-agent communications have rarely been demonstrated at scale; these simulations are generally executed using tens or hundreds of agents rather than the thousands or tens of thousands envisioned for large autonomous swarms. We address this deficit here by presenting two contributions. First, we extend our previous work on efficient, distributed algorithms for weak radiation source detection to accommodate the use case of surveillance across a very wide area. We then demonstrate the efficacy of the proposed algorithms at scale using a parallelized version of the ns-3 discrete event simulator.
Paper Details
Date Published: 9 May 2018
PDF: 7 pages
Proc. SPIE 10652, Disruptive Technologies in Information Sciences, 106520G (9 May 2018); doi: 10.1117/12.2306545
Published in SPIE Proceedings Vol. 10652:
Disruptive Technologies in Information Sciences
Misty Blowers; Russell D. Hall; Venkateswara R. Dasari, Editor(s)
PDF: 7 pages
Proc. SPIE 10652, Disruptive Technologies in Information Sciences, 106520G (9 May 2018); doi: 10.1117/12.2306545
Show Author Affiliations
Anton Y. Yen, Lawrence Livermore National Lab. (United States)
Peter D. Barnes, Lawrence Livermore National Lab. (United States)
Bhavya Kailkhura, Lawrence Livermore National Lab. (United States)
Priyadip Ray, Lawrence Livermore National Lab. (United States)
Peter D. Barnes, Lawrence Livermore National Lab. (United States)
Bhavya Kailkhura, Lawrence Livermore National Lab. (United States)
Priyadip Ray, Lawrence Livermore National Lab. (United States)
Deepak Rajan, Lawrence Livermore National Lab. (United States)
Kathleen L. Schmidt, Lawrence Livermore National Lab. (United States)
Ryan A. Goldhahn, Lawrence Livermore National Lab. (United States)
Kathleen L. Schmidt, Lawrence Livermore National Lab. (United States)
Ryan A. Goldhahn, Lawrence Livermore National Lab. (United States)
Published in SPIE Proceedings Vol. 10652:
Disruptive Technologies in Information Sciences
Misty Blowers; Russell D. Hall; Venkateswara R. Dasari, Editor(s)
© SPIE. Terms of Use
