Share Email Print

Proceedings Paper

Traceable instruments for encircled angular flux measurements
Author(s): Natascia Castagna; Jacques Morel; Edward Robinson; Hui Yang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We report on the development of an instrument for the measurement of the Encircled Angular Flux (EAF) and on establishing its metrological traceability at the required level of uncertainty. We designed and built for that purpose two independent EAF measuring instruments, both based on the analysis of the two-dimensional far field intensity profile observed at the output of an optical fibre, using either CMOS or CCD cameras. An in depth evaluation of the factors influencing the accuracy of the measurements was performed and allowed determining an uncertainty budget for EAF measurements, which was validated by a first series of inter-comparisons. Theses comparisons were performed between the two independent EAF measuring systems, using a 850 nm LED coupled into a gradient index fibre as a test object. We demonstrated a very good equivalence between the two systems, well within the absolute measurement uncertainties that were estimated at the 10-3 level. Further inter-comparisons using light sources coupled to step-index, large core and small core multimode fibres are still ongoing, with the aim to confirm the performances of the instrument under various illuminating conditions.

Paper Details

Date Published: 17 May 2018
PDF: 6 pages
Proc. SPIE 10683, Fiber Lasers and Glass Photonics: Materials through Applications, 106831B (17 May 2018); doi: 10.1117/12.2306430
Show Author Affiliations
Natascia Castagna, Federal Office of Metrology METAS (Switzerland)
Jacques Morel, Federal Office of Metrology METAS (Switzerland)
Edward Robinson, Arden Photonics Ltd. (United Kingdom)
Hui Yang, Arden Photonics Ltd. (United Kingdom)

Published in SPIE Proceedings Vol. 10683:
Fiber Lasers and Glass Photonics: Materials through Applications
Stefano Taccheo; Jacob I. Mackenzie; Maurizio Ferrari, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?