Share Email Print
cover

Proceedings Paper

Weakly supervised image semantic segmentation based on clustering superpixels
Author(s): Xiong Yan; Xiaohua Liu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, we propose an image semantic segmentation model which is trained from image-level labeled images. The proposed model starts with superpixel segmenting, and features of the superpixels are extracted by trained CNN. We introduce a superpixel-based graph followed by applying the graph partition method to group correlated superpixels into clusters. For the acquisition of inter-label correlations between the image-level labels in dataset, we not only utilize label co-occurrence statistics but also exploit visual contextual cues simultaneously. At last, we formulate the task of mapping appropriate image-level labels to the detected clusters as a problem of convex minimization. Experimental results on MSRC-21 dataset and LableMe dataset show that the proposed method has a better performance than most of the weakly supervised methods and is even comparable to fully supervised methods.

Paper Details

Date Published: 10 April 2018
PDF: 10 pages
Proc. SPIE 10615, Ninth International Conference on Graphic and Image Processing (ICGIP 2017), 106151Y (10 April 2018); doi: 10.1117/12.2302479
Show Author Affiliations
Xiong Yan, Jilin Univ. (China)
Xiaohua Liu, Jilin Univ. (China)


Published in SPIE Proceedings Vol. 10615:
Ninth International Conference on Graphic and Image Processing (ICGIP 2017)
Hui Yu; Junyu Dong, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray