Share Email Print

Proceedings Paper

Breast mass detection in mammography and tomosynthesis via fully convolutional network-based heatmap regression
Author(s): Jun Zhang; Elizabeth Hope Cain; Ashirbani Saha; Zhe Zhu; Maciej A. Mazurowski
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Breast mass detection in mammography and digital breast tomosynthesis (DBT) is an essential step in computerized breast cancer analysis. Deep learning-based methods incorporate feature extraction and model learning into a unified framework and have achieved impressive performance in various medical applications (e.g., disease diagnosis, tumor detection, and landmark detection). However, these methods require large-scale accurately annotated data. Unfortunately, it is challenging to get precise annotations of breast masses. To address this issue, we propose a fully convolutional network (FCN) based heatmap regression method for breast mass detection, using only weakly annotated mass regions in mammography images. Specifically, we first generate heat maps of masses based on human-annotated rough regions for breast masses. We then develop an FCN model for end-to-end heatmap regression with an F-score loss function, where the mammography images are regarded as the input and heatmaps for breast masses are used as the output. Finally, the probability map of mass locations can be estimated with the trained model. Experimental results on a mammography dataset with 439 subjects demonstrate the effectiveness of our method. Furthermore, we evaluate whether we can use mammography data to improve detection models for DBT, since mammography shares similar structure with tomosynthesis. We propose a transfer learning strategy by fine-tuning the learned FCN model from mammography images. We test this approach on a small tomosynthesis dataset with only 40 subjects, and we show an improvement in the detection performance as compared to training the model from scratch.

Paper Details

Date Published: 27 February 2018
PDF: 6 pages
Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 1057525 (27 February 2018); doi: 10.1117/12.2295443
Show Author Affiliations
Jun Zhang, Duke Univ. (United States)
Elizabeth Hope Cain, Duke Univ. (United States)
Ashirbani Saha, Duke Univ. (United States)
Zhe Zhu, Duke Univ. (United States)
Maciej A. Mazurowski, Duke Univ. (United States)

Published in SPIE Proceedings Vol. 10575:
Medical Imaging 2018: Computer-Aided Diagnosis
Nicholas Petrick; Kensaku Mori, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?