Share Email Print
cover

Proceedings Paper

Holmium laser ablation of cartilage: effects of delivery fiber angle of incidence
Author(s): Thomas Asshauer; Thorsten Oberthur; Thomas Jansen; Bruno E. Gerber; Guy P. Delacretaz
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The effects of 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered in isotonic saline solution via an optical fiber system on fresh porcine femur patellar groove cartilage were studied in vitro. Various irradiation geometry, corresponding to angles of 0 - 90 degree(s) of the delivering fiber with respect to the cartilage surface, have been investigated. A laser pulse energies of 1.0 J with a pulse duration of 250 microsecond(s) (FWHM) was used. The dynamics of the induced transient vapor bubbles and the ablation process were monitored by time resolved flash videography techniques. Acoustic transients of up to 200 bars induced by bubble collapses were measured by a calibrated piezoelectric needle probe hydrophone. Histological assessment of the irradiated cartilage samples was performed using azan and Safranin-O stains. The extent of the area of altered cartilage cells is larger than the zone of tissue matrix damage. The predominant mechanism of tissue damage is thermal rather than acousto-mechanical. Cartilage treatment at an angle of incidence of 30 degree(s) reduces significantly the overall damage as compared to 60 degree(s) or 90 degree(s) irradiation.

Paper Details

Date Published: 10 January 1996
PDF: 9 pages
Proc. SPIE 2624, Laser-Tissue Interaction and Tissue Optics, (10 January 1996); doi: 10.1117/12.229537
Show Author Affiliations
Thomas Asshauer, Swiss Federal Institute of Technology (Switzerland)
Thorsten Oberthur, Swiss Federal Institute of Technology (Switzerland)
Thomas Jansen, Swiss Federal Institute of Technology (Switzerland)
Bruno E. Gerber, Hopital Pourtales (Switzerland)
Guy P. Delacretaz, Swiss Federal Institute of Technology (Switzerland)


Published in SPIE Proceedings Vol. 2624:
Laser-Tissue Interaction and Tissue Optics
Guy P. Delacretaz; Rudolf W. Steiner; Lars Othar Svaasand; Hansjoerg Albrecht; Thomas H. Meier, Editor(s)

© SPIE. Terms of Use
Back to Top