Share Email Print
cover

Proceedings Paper

Frequency-shifted sources for terahertz-driven linear electron acceleration
Author(s): M. Hemmer; G. Cirmi; K. Ravi; F. Ahr; L. Zapata; A.-L. Calendron; H. Çankaya; S. W. Jolly; V. Leroux; T. Eichner; H. Ishizuki; T. Taira; N. Matlis; A. R. Maier; F. X. Kärtner
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The generation of THz-frequency radiation via nonlinear parametric frequency down-conversion has long been driven by the spectroscopy and imaging communities. As a result, little efforts have been undertaken toward the generation of high energy THz-frequency pulses. THz-frequency radiation has however recently been identified has a promising driver for strong-field physics and an emerging generation of compact particle accelerators. These accelerators require THzfrequency pulses with energies in the multi-millijoule range therefore demanding orders of magnitude improvements from the current state-of-the-art.

Much can be gained by improving the intrinsically low efficiency of the down-conversion process while still resorting to existing state-of-the-art lasers. However, the fundamental Manley-Rowe limit caps the efficiency of parametric downconversion from 1-μm wavelength lasers to sub-THz frequency to the sub-percent range.

We present methods that promise boosting the THz radiation yield obtained via parametric down-conversion beyond the Manley-Rowe limit. Our method relies on cascaded nonlinear three-wave mixing between two spectrally neighboring laser pulses in periodically poled Lithium Niobate. Owing to favorable phase-matching, the down-conversion process avalanches, resulting in spectral broadening in the optical domain. This allows in-situ coherent multiplexing of multiple parametric down-conversion stages within a single device and boosting the efficiency of the process beyond the ManleyRowe limit. We experimentally demonstrated the concept using either broadband, spectrally chirped optical pulses from a Joule-class laser or using two narrowband lasers with neighboring wavelengths. Experimental results are backed by numerical simulations that predict conversion efficiencies from 1 μm to sub-THz radiation in the multi-percent range.

Paper Details

Date Published: 15 February 2018
PDF: 8 pages
Proc. SPIE 10516, Nonlinear Frequency Generation and Conversion: Materials and Devices XVII, 105160F (15 February 2018); doi: 10.1117/12.2295357
Show Author Affiliations
M. Hemmer, Deutsches Elektronen-Synchrotron (Germany)
G. Cirmi, Deutsches Elektronen-Synchrotron (Germany)
The Hamburg Ctr. for Ultrafast Imaging (Germany)
K. Ravi, Deutsches Elektronen-Synchrotron (Germany)
Massachusetts Institute of Technology (United States)
F. Ahr, Deutsches Elektronen-Synchrotron (Germany)
The Hamburg Ctr. for Ultrafast Imaging (Germany)
Massachusetts Institute of Technology (United States)
L. Zapata, Deutsches Elektronen-Synchrotron (Germany)
A.-L. Calendron, Deutsches Elektronen-Synchrotron (Germany)
The Hamburg Ctr. for Ultrafast Imaging (Germany)
H. Çankaya, Deutsches Elektronen-Synchrotron (Germany)
The Hamburg Ctr. for Ultrafast Imaging (Germany)
S. W. Jolly, Deutsches Elektronen-Synchrotron (Germany)
The Hamburg Ctr. for Ultrafast Imaging (Germany)
Institute of Physics of the ASCR, v.v.i. (Czech Republic)
V. Leroux, Deutsches Elektronen-Synchrotron (Germany)
Institute of Physics of the ASCR, v.v.i. (Czech Republic)
T. Eichner, Deutsches Elektronen-Synchrotron (Germany)
H. Ishizuki, Institute for Molecular Science (Japan)
T. Taira, Institute for Molecular Science (Japan)
N. Matlis, Deutsches Elektronen-Synchrotron (Germany)
The Hamburg Ctr. for Ultrafast Imaging (Germany)
A. R. Maier, Deutsches Elektronen Synchrotron (Germany)
Univ. Hamburg (Germany)
F. X. Kärtner, Deutsches Elektronen-Synchrotron (Germany)
The Hamburg Ctr. for Ultrafast Imaging (Germany)
Massachusetts Institute of Technology (United States)


Published in SPIE Proceedings Vol. 10516:
Nonlinear Frequency Generation and Conversion: Materials and Devices XVII
Konstantin L. Vodopyanov; Kenneth L. Schepler, Editor(s)

© SPIE. Terms of Use
Back to Top