Share Email Print

Proceedings Paper

Optimizing alloys for laser additive manufacturing (Conference Presentation)

Paper Abstract

In the recent years, Laser Additive Manufacturing (LAM) has become a rather well-established manufacturing process to produce metallic parts. However, the very special consolidation conditions during AM with multiple heating and cooling at high rates may lead to complex out-of-equilibrium microstructures, pronounced element segregation and crack formation in the bulk alloy. However, there have been only a limited number of reliably processable alloys used in LAM so far, and the processing parameters are usually obtained in a trial-and-error approach. In order to exploit the advantages of LAM, novel alloys and composites adapted to the special processing conditions during LAM need to be developed. This requires a deep understanding of the materials consolidation process during LAM, which is currently still lacking. This talk will give an overview of the challenges and opportunities in LAM from a materials scientist’s perspective. Results of the LAM related research at Empa with a special emphasize on the optimization of Ti, Al and Cu based alloys will be presented.

Paper Details

Date Published: 14 March 2018
Proc. SPIE 10523, Laser 3D Manufacturing V, 105230J (14 March 2018); doi: 10.1117/12.2295335
Show Author Affiliations
Christian Leinenbach, EMPA (Switzerland)

Published in SPIE Proceedings Vol. 10523:
Laser 3D Manufacturing V
Henry Helvajian; Bo Gu; Alberto Piqué, Editor(s)

© SPIE. Terms of Use
Back to Top