Share Email Print

Proceedings Paper

Dataset variability leverages white-matter lesion segmentation performance with convolutional neural network
Author(s): Domen Ravnik; Tim Jerman; Franjo Pernuš; Boštjan Likar; Žiga Špiclin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Performance of a convolutional neural network (CNN) based white-matter lesion segmentation in magnetic resonance (MR) brain images was evaluated under various conditions involving different levels of image preprocessing and augmentation applied and different compositions of the training dataset. On images of sixty multiple sclerosis patients, half acquired on one and half on another scanner of different vendor, we first created a highly accurate multi-rater consensus based lesion segmentations, which were used in several experiments to evaluate the CNN segmentation result. First, the CNN was trained and tested without preprocessing the images and by using various combinations of preprocessing techniques, namely histogram-based intensity standardization, normalization by whitening, and train dataset augmentation by flipping the images across the midsagittal plane. Then, the CNN was trained and tested on images of the same, different or interleaved scanner datasets using a cross-validation approach. The results indicate that image preprocessing has little impact on performance in a same-scanner situation, while between-scanner performance benefits most from intensity standardization and normalization, but also further by incorporating heterogeneous multi-scanner datasets in the training phase. Under such conditions the between-scanner performance of the CNN approaches that of the ideal situation, when the CNN is trained and tested on the same scanner dataset.

Paper Details

Date Published: 2 March 2018
PDF: 9 pages
Proc. SPIE 10574, Medical Imaging 2018: Image Processing, 105741J (2 March 2018); doi: 10.1117/12.2293702
Show Author Affiliations
Domen Ravnik, Univ. of Ljubljana (Slovenia)
Tim Jerman, Univ. of Ljubljana (Slovenia)
Franjo Pernuš, Univ. of Ljubljana (Slovenia)
Boštjan Likar, Univ. of Ljubljana (Slovenia)
Žiga Špiclin, Univ. of Ljubljana (Slovenia)

Published in SPIE Proceedings Vol. 10574:
Medical Imaging 2018: Image Processing
Elsa D. Angelini; Bennett A. Landman, Editor(s)

© SPIE. Terms of Use
Back to Top