Share Email Print

Proceedings Paper

Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78±0.02 and 0.82±0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90±0.04 on the independent DBT test set.

Paper Details

Date Published: 27 February 2018
PDF: 7 pages
Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105750Q (27 February 2018); doi: 10.1117/12.2293412
Show Author Affiliations
Ravi K. Samala, Univ. of Michigan (United States)
Heang-Ping Chan, Univ. of Michigan (United States)
Lubomir Hadjiiski, Univ. of Michigan (United States)
Mark A. Helvie, Univ. of Michigan (United States)
Caleb Richter, Univ. of Michigan (United States)
Kenny Cha, Univ. of Michigan (United States)

Published in SPIE Proceedings Vol. 10575:
Medical Imaging 2018: Computer-Aided Diagnosis
Nicholas Petrick; Kensaku Mori, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?