Share Email Print

Proceedings Paper

Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers (Conference Presentation)

Paper Abstract

Radiation balanced lasing (RBL) is an attractive pathway towards development of high power and good beam quality lasers because heat removal via anti-Stokes luminescence (optical refrigeration) does not require additional connections and components and the heat is dissipated away from the active medium. Optical refrigeration had been demonstrated in rare-earth doped laser medium, but is far more difficult to achieve it in semiconductors laser medium. The main obstacle to RBL in semiconductors that the most efficient cooling occurs at relatively low carrier densities, while the gain required to sustain laser operation requires much higher densities. In this talk we explore the means of resolving this conundrum by separating the optical refrigeration and lasing in temporal, spatial, and/or spectral domains. Time multiplexing involves modulating the pump and operating the laser in pulse modes with lasing and cooling intervals. Space multiplexing involves having separate regions (quantum wells and dots) for lasing and cooling. The spectral multiplexing involves operating with two separate pumps – one for lasing and one for cooling. This methods will be compared in the talk with the goal of selecting the optimal path towards radiation balanced semiconductor lasers.

Paper Details

Date Published: 14 March 2018
Proc. SPIE 10550, Optical and Electronic Cooling of Solids III, 105500A (14 March 2018); doi: 10.1117/12.2292684
Show Author Affiliations
Jacob B. Khurgin, Johns Hopkins Univ. (United States)
Zohreh Vafapour, Johns Hopkins Univ. (United States)

Published in SPIE Proceedings Vol. 10550:
Optical and Electronic Cooling of Solids III
Richard I. Epstein; Denis V. Seletskiy; Mansoor Sheik-Bahae, Editor(s)

© SPIE. Terms of Use
Back to Top