Share Email Print

Proceedings Paper

Applying a CAD-generated imaging marker to assess short-term breast cancer risk
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Although whether using computer-aided detection (CAD) helps improve radiologists’ performance in reading and interpreting mammograms is controversy due to higher false-positive detection rates, objective of this study is to investigate and test a new hypothesis that CAD-generated false-positives, in particular, the bilateral summation of false-positives, is a potential imaging marker associated with short-term breast cancer risk. An image dataset involving negative screening mammograms acquired from 1,044 women was retrospectively assembled. Each case involves 4 images of craniocaudal (CC) and mediolateral oblique (MLO) view of the left and right breasts. In the next subsequent mammography screening, 402 cases were positive for cancer detected and 642 remained negative. A CAD scheme was applied to process all “prior” negative mammograms. Some features from CAD scheme were extracted, which include detection seeds, the total number of false-positive regions, an average of detection scores and the sum of detection scores in CC and MLO view images. Then the features computed from two bilateral images of left and right breasts from either CC or MLO view were combined. In order to predict the likelihood of each testing case being positive in the next subsequent screening, two logistic regression models were trained and tested using a leave-one-case-out based cross-validation method. Data analysis demonstrated the maximum prediction accuracy with an area under a ROC curve of AUC=0.65±0.017 and the maximum adjusted odds ratio of 4.49 with a 95% confidence interval of [2.95, 6.83]. The results also illustrated an increasing trend in the adjusted odds ratio and risk prediction scores (p<0.01). Thus, the study showed that CAD-generated false-positives might provide a new quantitative imaging marker to help assess short-term breast cancer risk.

Paper Details

Date Published: 27 February 2018
PDF: 7 pages
Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105753F (27 February 2018); doi: 10.1117/12.2291527
Show Author Affiliations
Seyedehnafiseh Mirniaharikandehei, The Univ. of Oklahoma (United States)
Ali Zarafshani, The Univ. of Oklahoma (United States)
Morteza Heidari, The Univ. of Oklahoma (United States)
Yunzhi Wang, The Univ. of Oklahoma (United States)
Faranak Aghaei, The Univ. of Oklahoma (United States)
Bin Zheng, The Univ. of Oklahoma (United States)

Published in SPIE Proceedings Vol. 10575:
Medical Imaging 2018: Computer-Aided Diagnosis
Nicholas Petrick; Kensaku Mori, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?