Share Email Print

Proceedings Paper

Photoacoustic projection imaging using an all-optical detector array
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

Paper Details

Date Published: 19 February 2018
PDF: 7 pages
Proc. SPIE 10494, Photons Plus Ultrasound: Imaging and Sensing 2018, 104944C (19 February 2018); doi: 10.1117/12.2289810
Show Author Affiliations
J. Bauer-Marschallinger, Research Ctr. for Non Destructive Testing GmbH (Austria)
K. Felbermayer, Research Ctr. for Non Destructive Testing GmbH (Austria)
T. Berer, Research Ctr. for Non Destructive Testing GmbH (Austria)

Published in SPIE Proceedings Vol. 10494:
Photons Plus Ultrasound: Imaging and Sensing 2018
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?