Share Email Print

Proceedings Paper

Signal-to-noise ratio of arbitrarily filtered spontaneous emission
Author(s): Marko Šprem; Marko Bosiljevac; Dubravko Babić
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The signal-to-noise ratio (SNR) of filtered incoherent light can be approximated from the product of the coherence time of the light and the equivalent (electrical) noise bandwidth of the detector. This approximation holds only for the light with very short coherence time, that is in the case where the optical bandwidth of the light is much larger than the electrical bandwidth. We present here an expression for accurate evaluation of the SNR of the filtered incoherent light, which computes SNR from arbitrary shapes of optical and electrical filter power spectral densities (PSD). The PSDs of the filters can be measured using optical and electrical spectrum analyzers. Using our expression, we show that the SNR reaches unity when the electrical filter bandwidth is becoming larger than the optical filter bandwidth. To prove the theory, we evaluate and directly measure SNR of an incoherent light source filtered with several optical filters with bandwidths larger and commensurate with the bandwidth of the detector. For later we used optical and electrical filters with 3-dB bandwidths of 15 GHz and 10 GHz, respectively. Using our expression to evaluate SNR we obtained results in a good agreement with directly measured SNR. The results also prove that the approximation for evaluating SNR does not provide accurate results. The PSD of the detector with large noise bandwidth is difficult to measure using spectrum analyzer. There- fore, we report here a method for measuring the electrical noise bandwidth of the detector using the heterodyne linewidth measurement technique with tunable laser.

Paper Details

Date Published: 23 February 2018
PDF: 9 pages
Proc. SPIE 10526, Physics and Simulation of Optoelectronic Devices XXVI, 1052621 (23 February 2018);
Show Author Affiliations
Marko Šprem, Univ. of Zagreb (Croatia)
Marko Bosiljevac, Univ. of Zagreb (Croatia)
Dubravko Babić, Univ. of Zagreb (Croatia)

Published in SPIE Proceedings Vol. 10526:
Physics and Simulation of Optoelectronic Devices XXVI
Bernd Witzigmann; Marek Osiński; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?