Share Email Print

Proceedings Paper

Development of an intelligent vibration gripper
Author(s): Satoshi Honda
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An intelligent vibration gripper has been developed. The gripper can handle an object of unknown weight and unknown surface conditions with the most suitable grasping force. Additionally, the gripper can adapt the grasping force to the most suitable value for the object even if the weight and the surface conditions of the object change. The gripper has two parallel fingers. Each finger is composed of a mechanical vibration system with two mass blocks and two springs. In one mass block, a harmonic force is always generated and is absorbed by a dynamic damper consisting of another mass block and a spring, so that one mass block is kept in a stationary condition. The object is grasped by stationary blocks on both sides. When the object is grasped with the most suitable grasping force, the object and all of the mass blocks become stationary because harmonic forces are transmitted to the object and the two harmonic forces cancel out each other. In this gripper, the grasping force is adjusted to the most suitable values by detecting the amplitudes of the dynamic dampers. This paper describes a fundamental principle of a new vibration gripper.

Paper Details

Date Published: 22 December 1995
PDF: 8 pages
Proc. SPIE 2595, Machine Tool, In-Line, and Robot Sensors and Controls, (22 December 1995); doi: 10.1117/12.228851
Show Author Affiliations
Satoshi Honda, Science Univ. of Tokyo (Japan)

Published in SPIE Proceedings Vol. 2595:
Machine Tool, In-Line, and Robot Sensors and Controls
George D. Foret; Kam C. Lau; Bartholomew O. Nnaji, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?