Share Email Print

Proceedings Paper

Demonstration of 153.6-Tbps throughput from 1,536x1,536 optical switch with uniform-loss and cyclic-frequency AWGs
Author(s): Hiroki Nagai; Yojiro Mori; Hiroshi Hasegawa; Ken-ichi Sato
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The traffic volume processed within the datacenter increases exponentially. In a typical datacenter, top-of-rack (ToR) switches connected to servers are interconnected via multi-stage electrical switches. The electrical switches require power-consuming optical-to-electrical and electrical-to-optical conversion. To resolve the problem, a single optical switch needs to be introduced to offload large-capacity flows. The optical switch in the datacenter must have a large number of input/output ports to support many ToR switches. The combination of delivery-and-coupling (DC) switches and wavelength-routing (WR) switches comprised of 1xN non-cyclic arrayed-waveguide gratings (AWGs) can attain high-port-count switches. To further increase the port count, the system loss must be reduced or higher-power transmitters must be used. To overcome this difficulty, we propose novel optical-switch architecture in which nxN uniform-loss and cyclic-frequency (ULCF) AWGs are utilized for the WR-switch part, where the system loss can be reduced by the factor of n. To confirm the effectiveness of our proposal, 12x48 ULCF AWGs were newly fabricated with planar-lightwave-circuit (PLC) technology. Part of a 1,536x1,536 optical switch was constructed, and good transmission performance was experimentally confirmed by bit-error-ratio measurements in 96-wavelength 32-Gbaud DP-QPSK signals in the full C-band. The throughput was 153.6 Tbps.

Paper Details

Date Published: 30 January 2018
PDF: 6 pages
Proc. SPIE 10560, Metro and Data Center Optical Networks and Short-Reach Links, 105600P (30 January 2018);
Show Author Affiliations
Hiroki Nagai, Nagoya Univ. (Japan)
Yojiro Mori, Nagoya Univ. (Japan)
Hiroshi Hasegawa, Nagoya Univ. (Japan)
Ken-ichi Sato, Nagoya Univ. (Japan)

Published in SPIE Proceedings Vol. 10560:
Metro and Data Center Optical Networks and Short-Reach Links
Atul K. Srivastava; Madeleine Glick; Youichi Akasaka, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?