Share Email Print

Proceedings Paper

Getting more early photons with less background: detection rate and signal-to-background improvements in enhanced early photon imaging
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

With tissue samples less than 1 mm in thickness, optical projection tomography (OPT) has proven to be a very powerful imaging modality that can achieve high spatial resolution images. This high resolution is achieved by collecting the photons with non-significant scattering through 1 mm of tissue, the so-called diffusion limit. But, with samples thicker than 1 mm, scattered photons dominate and the highly resolved images give way to significantly “blurred” images in OPT[1]. However, as increased scattering relates to increased time of travel of the photons so time-domain OPT has been used to only collect the early-arriving photons that have travelled a more direct route through the tissue to reduce detection of scattered photons. Yet very early photons are extremely rare compared to scattered photons. Our recent suggested early photon count rates can be significantly enhanced by running the detector in a “deadtime” regime where the deadtime incurred by early-arriving photons acts as a shutter to later-arriving scattered photons[2]. In this work, we will demonstrate that running in the deadtime also had the unexpected advantage of significantly reducing the number of background photons detected. Proposed approach increases the early photon detection rate by 3-orders-of-magnitude in comparison with conventional approaches in 4-mm thick tissues with 780 nm light while the laser power is far below the level that would significantly damage the tissue. In addition, the signal to background (caused by after pulsing) was improved by 70-fold compared to conventional approaches designed to collect an equal number of early photons.

Paper Details

Date Published: 19 February 2018
PDF: 9 pages
Proc. SPIE 10486, Design and Quality for Biomedical Technologies XI, 104860E (19 February 2018); doi: 10.1117/12.2287182
Show Author Affiliations
Lagnojita Sinha, Illinois Institute of Technology (United States)
Jovan G. Brankov, Illinois Institute of Technology (United States)
Kenneth M. Tichauer, Illinois Institute of Technology (United States)

Published in SPIE Proceedings Vol. 10486:
Design and Quality for Biomedical Technologies XI
Ramesh Raghavachari; Rongguang Liang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?