Share Email Print

Proceedings Paper

Study on the distribution of biomolecules in different layers of porous silicon microcavity biosensor
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Porous silicon has many advantages, such as biodegradability, biocompatibility, tunable pore size and active covalent and non-covalent surface chemical properties. One-dimensional porous silicon photonic crystal microcavity structure has the characteristics of porous silicon and optical microcavity, it is compatible with existing silicon micromachining technology and can be embedded into the sensitive chip so as to realize the function of micro-nano detection devices and integration. At present, there are many biosensors based on existing porous silicon microcavity, through controlling the pore size of porous silicon microcavities, the biological target molecules penetrate into the porous silicon microcavity structure, leading to increases of refractive index of porous silicon layers. In the practical test, we found that the penetration of biological molecules in the microcavity is not uniform, it is difficult to enter into the deeper porous silicon layers, according to this, the paper will explore the distributional characteristics of different biological molecules in the microcavity, and the variation of the sensing efficiency under the circumstance of nonuniform increase in refractive index. This study will be helpful to the accurate design and theoretical development of high efficiency porous silicon microcavity biosensor.

Paper Details

Date Published: 24 October 2017
PDF: 6 pages
Proc. SPIE 10462, AOPC 2017: Optical Sensing and Imaging Technology and Applications, 1046244 (24 October 2017);
Show Author Affiliations
Xiaoyang Yu, Xinjiang Univ. (China)
Xiaoyi Lv, Xinjiang Univ. (China)
Jiaqing Mo, Xinjiang Univ. (China)
Zhenhong Jia, Xinjiang Univ. (China)
Xiangxiang Zheng, Xinjiang Univ. (China)

Published in SPIE Proceedings Vol. 10462:
AOPC 2017: Optical Sensing and Imaging Technology and Applications
Yadong Jiang; Haimei Gong; Weibiao Chen; Jin Li, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?