Share Email Print

Proceedings Paper

The calculation and representation of polarization aberration induced by 3D mask in lithography simulation
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

With the continuous shrink of feature sizes, the 3D mask effects cannot be ignored in computational lithography. 3D mask effects inducing focus shift and scalar aberration like spherical aberration have been studied very well. To our knowledge, the polarization aberration (PA) including scalar aberration, retardance and diattenuation caused by 3D mask effects have not been paid attention to, which is very significant for computational lithography in advanced node. In this paper, we propose a novel approach to derive the PA induced by 3D mask effects from the diffraction frequency spectrum between the rigorous electromagnetic field model and the Kirchhoff model and express it as Jones matrix pupil. In addition, the physical decomposition of Jones matrix is adopted to obtain five physical properties of polarization aberration induced by 3D mask. Thus, the proposed method can fully, quantitatively, and clearly describe the PA induced by 3D mask.

Paper Details

Date Published: 24 October 2017
PDF: 7 pages
Proc. SPIE 10460, AOPC 2017: Optoelectronics and Micro/Nano-Optics, 104601J (24 October 2017); doi: 10.1117/12.2285267
Show Author Affiliations
Yunyun Hao, Beijing Institute of Technology (China)
Yanqiu Li, Beijing Institute of Technology (China)
Tie Li, Beijing Institute of Technology (China)
Naiyuan Sheng, Beijing Institute of Technology (China)

Published in SPIE Proceedings Vol. 10460:
AOPC 2017: Optoelectronics and Micro/Nano-Optics
Min Qiu; Min Gu; Xiaocong Yuan; Zhiping Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top