Share Email Print
cover

Proceedings Paper

Deep learning based hand gesture recognition in complex scenes
Author(s): Zihan Ni; Nong Sang; Cheng Tan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recently, region-based convolutional neural networks(R-CNNs) have achieved significant success in the field of object detection, but their accuracy is not too high for small objects and similar objects, such as the gestures. To solve this problem, we present an online hard example testing(OHET) technology to evaluate the confidence of the R-CNNs' outputs, and regard those outputs with low confidence as hard examples. In this paper, we proposed a cascaded networks to recognize the gestures. Firstly, we use the region-based fully convolutional neural network(R-FCN), which is capable of the detection for small object, to detect the gestures, and then use the OHET to select the hard examples. To enhance the accuracy of the gesture recognition, we re-classify the hard examples through VGG-19 classification network to obtain the final output of the gesture recognition system. Through the contrast experiments with other methods, we can see that the cascaded networks combined with the OHET reached to the state-of-the-art results of 99.3% mAP on small and similar gestures in complex scenes.

Paper Details

Date Published: 8 March 2018
PDF: 7 pages
Proc. SPIE 10609, MIPPR 2017: Pattern Recognition and Computer Vision, 106090V (8 March 2018); doi: 10.1117/12.2284977
Show Author Affiliations
Zihan Ni, Huazhong Univ. of Science and Technology (China)
Nong Sang, Huazhong Univ. of Science and Technology (China)
Cheng Tan, ContextLogic Inc. (United States)


Published in SPIE Proceedings Vol. 10609:
MIPPR 2017: Pattern Recognition and Computer Vision
Zhiguo Cao; Yuehuang Wang; Chao Cai, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray