Share Email Print
cover

Proceedings Paper

Influence of axial temperature distribution to optical parametric gain in CW-OPO
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We use the fiber-pumped MgO:PPLN crystal to realize the MIR CW-OPO operation, and observe the nonuniform temperature distribution on the central axis of the crystal. Then we use the heat transfer model in COMSOL software to simulate the temperature distribution in the crystal and find the near linear temperature gradient on the central axis of the crystal. Input the axial temperature distribution to our SRO model based on MATLAB and the simulation results show that the linear axial temperature gradient distribution will not only cause the center wavelength shift of the signal light, but also reduce the parametric gain of the signal light, the uniform temperature along the crystal axis will get the maximum gain. This feature limits the prospect of the single OPO in high-power narrow linewidth laser.

Paper Details

Date Published: 24 October 2017
PDF: 5 pages
Proc. SPIE 10457, AOPC 2017: Laser Components, Systems, and Applications, 104572A (24 October 2017); doi: 10.1117/12.2284792
Show Author Affiliations
Xiaotian Cai, National Univ. of Defense Technology (China)
Hunan Provincial Key Lab. of High Energy Laser Technology (China)
Hunan Provincial Collaborative Innovation Ctr. of High Power Fiber Laser (China)
Xiao Li, National Univ. of Defense Technology (China)
Hunan Provincial Key Lab. of High Energy Laser Technology (China)
Hunan Provincial Collaborative Innovation Ctr. of High Power Fiber Laser (China)
Guomin Zhao, National Univ. of Defense Technology (China)
Hunan Provincial Key Lab. of High Energy Laser Technology (China)
Hunan Provincial Collaborative Innovation Ctr. of High Power Fiber Laser (China)


Published in SPIE Proceedings Vol. 10457:
AOPC 2017: Laser Components, Systems, and Applications
Shibin Jiang; Lijun Wang; Lan Jiang; Long Zhang, Editor(s)

© SPIE. Terms of Use
Back to Top