Share Email Print

Proceedings Paper

Impact of the track density versus linear density trade-off on the read channel: TCPR4 versus EPR4
Author(s): Necip Sayiner
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The areal density on a magnetic recording medium can be increased by increasing the linear bit density, or by increasing the track density, or, more commonly, by a combination of both. Equalizing the signal to a higher order partial response polynomial (i.e. EPR4), and employing a trellis code in conjunction with a PR4 channel (i.e. TCPR4) are among the techniques to achieve this goal by providing performance gains over a PR4 system. In this study, the potential increases in linear and track densities that could be afforded by EPR4 and TCPR4 are investigated by simulating a read channel model which incorporates the effects of non-ideal timing recovery, A/D conversion, and finite register-lengths, using spinstand data. In order to quantify the effects of the increased track density, intertrack interference (ITI) is taken into account in evaluating the performance, by defining the interference as a function of the track misregistration. The trade-offs concerning the equalizer loss due to a higher linear bit density and the SNR loss due to a narrower track, as a function of PW50/T, are addressed. The measure of performance used captures the coding gain, the rate loss due to coding, the loss of the equalizer, and the degradation due to ITI. Assuming similar hardware complexity for the detectors, the two alternatives are compared in terms of the areal density increase they provide over a range of user bit densities that are of current practical interest.

Paper Details

Date Published: 8 December 1995
PDF: 8 pages
Proc. SPIE 2605, Coding and Signal Processing for Information Storage, (8 December 1995); doi: 10.1117/12.228219
Show Author Affiliations
Necip Sayiner, AT&T Bell Labs. (United States)

Published in SPIE Proceedings Vol. 2605:
Coding and Signal Processing for Information Storage
Raghuveer M. Rao; Soheil A. Dianat; Steven W. McLaughlin; Martin Hassner, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?