Share Email Print

Proceedings Paper

A MR image sparse reconstruction method based on compressed sensing
Author(s): Nan Sun; Qi Dai II
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Aiming at solving the defect, slow speed of magnetic resonance imaging (MRI), we propose a magnetic resonance image reconstruction method based on compressed sensing (CS), combining Shift-Invariant Discrete Wavelet Transformation (SIDWT) and dictionary learning (DL). Since the method is based on CS, it obtains the part of k-space image data by undersampling and reconstructs the original image by SIDWT. Then the dictionary learning and sparse coding phase are used in the sparse representation of the original image. Finally, the undersampling image is reconstructed by image iteration update stage, and the quality of the reconstructed image is evaluated objectively via the Peak Signal-to-Noise Ratio (PSNR). Compared with the existing sparse reconstruction algorithm, the proposed method achieves high quality reconstruction of undersampled MR images, and shortens the time of MR image signal acquisition.

Paper Details

Date Published: 21 July 2017
PDF: 6 pages
Proc. SPIE 10420, Ninth International Conference on Digital Image Processing (ICDIP 2017), 104203Z (21 July 2017);
Show Author Affiliations
Nan Sun, Southwest Jiaotong Univ. (China)
Qi Dai II, Southwest Jiaotong Univ. (China)

Published in SPIE Proceedings Vol. 10420:
Ninth International Conference on Digital Image Processing (ICDIP 2017)
Charles M. Falco; Xudong Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?