Share Email Print

Proceedings Paper

Investigation of tracking systems properties in CAVE-type virtual reality systems
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In recent years, many scientific and industrial centers in the world developed a virtual reality systems or laboratories. One of the most advanced solutions are Immersive 3D Visualization Lab (I3DVL), a CAVE-type (Cave Automatic Virtual Environment) laboratory. It contains two CAVE-type installations: six-screen installation arranged in a form of a cube, and four-screen installation, a simplified version of the previous one.

The user feeling of “immersion” and interaction with virtual world depend on many factors, in particular on the accuracy of the tracking system of the user. In this paper properties of the tracking systems applied in I3DVL was investigated. For analysis two parameters were selected: the accuracy of the tracking system and the range of detection of markers by the tracking system in space of the CAVE.

Measurements of system accuracy were performed for six-screen installation, equipped with four tracking cameras for three axes: X, Y, Z. Rotation around the Y axis was also analyzed. Measured tracking system shows good linear and rotating accuracy. The biggest issue was the range of the monitoring of markers inside the CAVE. It turned out, that the tracking system lose sight of the markers in the corners of the installation. For comparison, for a simplified version of CAVE (four-screen installation), equipped with eight tracking cameras, this problem was not occur. Obtained results will allow for improvement of cave quality.

Paper Details

Date Published: 7 August 2017
PDF: 6 pages
Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104451T (7 August 2017); doi: 10.1117/12.2280866
Show Author Affiliations
Magda Szymaniak, Gdańsk Univ. of Technology (Poland)
Adam Mazikowski, Gdańsk Univ. of Technology (Poland)
Michał Meironke, Gdańsk Univ. of Technology (Poland)

Published in SPIE Proceedings Vol. 10445:
Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017
Ryszard S. Romaniuk; Maciej Linczuk, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?