Share Email Print

Proceedings Paper

ILT optimization of EUV masks for sub-7nm lithography
Author(s): Kevin Hooker; Bernd Kuechler; Aram Kazarian; Guangming Xiao; Kevin Lucas
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.

Paper Details

Date Published: 28 September 2017
PDF: 12 pages
Proc. SPIE 10446, 33rd European Mask and Lithography Conference, 1044604 (28 September 2017);
Show Author Affiliations
Kevin Hooker, Synopsys, Inc. (United States)
Bernd Kuechler, Synopsys GmbH (Germany)
Aram Kazarian, Synopsys, Inc. (United States)
Guangming Xiao, Synopsys, Inc. (United States)
Kevin Lucas, Synopsys, Inc. (United States)

Published in SPIE Proceedings Vol. 10446:
33rd European Mask and Lithography Conference
Uwe F.W. Behringer; Jo Finders, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?