Share Email Print

Proceedings Paper

Design of autonomous sensor nodes for remote soil monitoring in tropical banana plantation
Author(s): Francis Jerome G. Tiausas; Jerelyn Co; Marc Joseph M. Macalinao; Maria Leonora Guico; Jose Claro Monje; Carlos Oppus
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Determining the effect of Fusarium oxysporum f. sp. cubense Tropical Race 4 on various soil parameters is essential in modeling and predicting its occurrence in banana plantations. One way to fulfill this is through a sensor network that will continuously and automatically monitor environmental conditions at suspect locations for an extended period of time. A wireless sensor network was developed specifically for this purpose. This sensor network is capable of measuring soil acidity, moisture, temperature, and conductivity. The designed prototype made use of off-the-shelf Parrot Flower Power soil sensor, pH sensor, Bluno Beetle, battery, and 3D-printed materials, catering specifically to the conditions of tropical banana plantations with consideration for sensor node size, communication, and power. Sensor nodes were tested on both simulated tropical environments and on an actual banana plantation in San Jose, General Santos City, Philippines. Challenges were resolved through iterative design and development of prototypes. Several tests including temperature and weather resilience, and structural stress tests were done to validate the design. Findings showed that the WSN nodes developed for this purpose are resilient to high tropical temperatures for up to 12 hours of continuous exposure, are able to withstand compressive forces of up to 8880.6 N, and can reliably collect data automatically from the area 47.96% of the time at an hourly frequency under actual field conditions.

Paper Details

Date Published: 6 September 2017
PDF: 9 pages
Proc. SPIE 10444, Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017), 1044402 (6 September 2017); doi: 10.1117/12.2279132
Show Author Affiliations
Francis Jerome G. Tiausas, Ateneo de Manila Univ. (Philippines)
Jerelyn Co, Ateneo de Manila Univ. (Philippines)
Marc Joseph M. Macalinao, Ateneo de Manila Univ. (Philippines)
Maria Leonora Guico, Ateneo de Manila Univ. (Philippines)
Jose Claro Monje, Ateneo de Manila Univ. (Philippines)
Carlos Oppus, Ateneo de Manila Univ. (Philippines)

Published in SPIE Proceedings Vol. 10444:
Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017)
Kyriacos Themistocleous; Silas Michaelides; Giorgos Papadavid; Vincent Ambrosia; Gunter Schreier; Diofantos G. Hadjimitsis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?