
Proceedings Paper
A significant-loophole-free test of Bell's theorem with entangled photonsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
John Bell’s theorem of 1964 states that local elements of physical reality, existing independent of measurement, are inconsistent with the predictions of quantum mechanics (Bell, J. S. (1964), Physics (College. Park. Md). Specifically, correlations between measurement results from distant entangled systems would be smaller than predicted by quantum physics. This is expressed in Bell’s inequalities. Employing modifications of Bell’s inequalities, many experiments have been performed that convincingly support the quantum predictions. Yet, all experiments rely on assumptions, which provide loopholes for a local realist explanation of the measurement. Here we report an experiment with polarization-entangled photons that simultaneously closes the most significant of these loopholes. We use a highly efficient source of entangled photons, distributed these over a distance of 58.5 meters, and implemented rapid random setting generation and high-efficiency detection to observe a violation of a Bell inequality with high statistical significance. The merely statistical probability of our results to occur under local realism is less than 3.74×10-31, corresponding to an 11.5 standard deviation effect.
Paper Details
Date Published: 5 October 2017
PDF: 9 pages
Proc. SPIE 10442, Quantum Information Science and Technology III, 1044204 (5 October 2017); doi: 10.1117/12.2277696
Published in SPIE Proceedings Vol. 10442:
Quantum Information Science and Technology III
Mark T. Gruneisen; Miloslav Dusek; John G. Rarity, Editor(s)
PDF: 9 pages
Proc. SPIE 10442, Quantum Information Science and Technology III, 1044204 (5 October 2017); doi: 10.1117/12.2277696
Show Author Affiliations
Marissa Giustina, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Marijn A. M. Versteegh, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Sören Wengerowsky, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Johannes Handsteiner, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Armin Hochrainer, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Kevin Phelan, Institute for Quantum Optics and Quantum Information (Austria)
Fabian Steinlechner, Institute for Quantum Optics and Quantum Information (Austria)
Johannes Kofler, Max-Planck-Institute of Quantum Optics (Germany)
Jan-Åke Larsson, Linköping Univ. (Sweden)
Carlos Abellán, ICFO - Institut de Ciències Fotòniques (Spain)
Waldimar Amaya, ICFO - Institut de Ciències Fotòniques (Spain)
Univ. of Vienna (Austria)
Marijn A. M. Versteegh, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Sören Wengerowsky, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Johannes Handsteiner, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Armin Hochrainer, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Kevin Phelan, Institute for Quantum Optics and Quantum Information (Austria)
Fabian Steinlechner, Institute for Quantum Optics and Quantum Information (Austria)
Johannes Kofler, Max-Planck-Institute of Quantum Optics (Germany)
Jan-Åke Larsson, Linköping Univ. (Sweden)
Carlos Abellán, ICFO - Institut de Ciències Fotòniques (Spain)
Waldimar Amaya, ICFO - Institut de Ciències Fotòniques (Spain)
Morgan W. Mitchell, ICFO - Institut de Ciències Fotòniques (Spain)
Institució Catalana de Recerca i Estudis Avançats (Spain)
Jörn Beyer, Physikalisch-Technische Bundesanstalt (Germany)
Thomas Gerrits, National Institute of Standards and Technology (United States)
Adriana E. Lita, National Institute of Standards and Technology (United States)
Lynden K. Shalm, National Institute of Standards and Technology (United States)
Sae Woo Nam, National Institute of Standards and Technology (United States)
Thomas Scheidl, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Rupert Ursin, Institute for Quantum Optics and Quantum Information (Austria)
Bernhard Wittmann, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Anton Zeilinger, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Institució Catalana de Recerca i Estudis Avançats (Spain)
Jörn Beyer, Physikalisch-Technische Bundesanstalt (Germany)
Thomas Gerrits, National Institute of Standards and Technology (United States)
Adriana E. Lita, National Institute of Standards and Technology (United States)
Lynden K. Shalm, National Institute of Standards and Technology (United States)
Sae Woo Nam, National Institute of Standards and Technology (United States)
Thomas Scheidl, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Rupert Ursin, Institute for Quantum Optics and Quantum Information (Austria)
Bernhard Wittmann, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Anton Zeilinger, Institute for Quantum Optics and Quantum Information (Austria)
Univ. of Vienna (Austria)
Published in SPIE Proceedings Vol. 10442:
Quantum Information Science and Technology III
Mark T. Gruneisen; Miloslav Dusek; John G. Rarity, Editor(s)
© SPIE. Terms of Use
