Share Email Print

Proceedings Paper

Aberrations of temporally modulated optical wavefronts in dispersive optical systems
Author(s): David H. Parker
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Classical time-invariant lens aberrations, and methods for correcting them, are well known in the art. However, the design, analysis, and construction of optical components and systems for temporally modulated optical wavefronts–and in particular, wavefronts in optical time-of-flight or phase measurement instruments, such as laser trackers, heterodyne laser interferometers, and spherical retroreflectors, require additional considerations to correct for what will be called Optical Amplitude Modulation (OAM) aberrations. Ray tracing analysis is time-invariant and thus insensitive to temporal modulation of the rays. Secondary considerations must be given to the wavefront of the modulated envelope which is focused on a detector, i.e., while the rays converge to a focus, the phase of the modulated envelope will in general depend on the path of the rays. Elements from communications theory, including amplitude modulation (AM) and analysis in the Fourier transform frequency domain are unified with classical optics, where the optical wavelength of a laser is treated as a carrier signal and the AM produces two slightly offset sidebands. The sidebands produce the OAM aberration due to dispersion and different paths through the optical elements. Suggestions are made for methods for correcting OAM aberrations, such as lens designs that are achromatic at the two sidebands, the use of specific materials matched to the carrier wavelength, the use of corrector plates, and computer modeling tools. A review of relevant patent literature is included.

Paper Details

Date Published: 24 August 2017
PDF: 13 pages
Proc. SPIE 10376, Novel Optical Systems Design and Optimization XX, 1037609 (24 August 2017); doi: 10.1117/12.2274277
Show Author Affiliations
David H. Parker, Parker Intellectual Property Enterprises, LLC (United States)

Published in SPIE Proceedings Vol. 10376:
Novel Optical Systems Design and Optimization XX
Arthur J. Davis; Cornelius F. Hahlweg; Joseph R. Mulley, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?