Share Email Print

Proceedings Paper

Display of high dynamic range images under varying viewing conditions
Author(s): Tim Borer
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recent demonstrations of high dynamic range (HDR) television have shown that superb images are possible. With the emergence of an HDR television production standard (ITU-R Recommendation BT.2100) last year, HDR television production is poised to take off. However research to date has focused principally on HDR image display only under “dark” viewing conditions. HDR television will need to be displayed at varying brightness and under varying illumination (for example to view sport in daytime or on mobile devices). We know, from common practice with conventional TV, that the rendering intent (gamma) should change under brighter conditions, although this is poorly quantified. For HDR the need to render images under varying conditions is all the more acute. This paper seeks to explore the issues surrounding image display under varying conditions. It also describes how visual adaptation is affected by display brightness, surround illumination, screen size and viewing distance. Existing experimental results are presented and extended to try to quantify these effects. Using the experimental results it is described how HDR images may be displayed so that they are perceptually equivalent under different viewing conditions. A new interpretation of the experimental results is reported, yielding a new, luminance invariant model for the appropriate display “gamma”. In this way the consistency of HDR image reproduction should be improved, thereby better maintaining “creative intent” in television.

Paper Details

Date Published: 19 September 2017
PDF: 13 pages
Proc. SPIE 10396, Applications of Digital Image Processing XL, 103960H (19 September 2017); doi: 10.1117/12.2274253
Show Author Affiliations
Tim Borer, British Broadcasting Corp. (United Kingdom)

Published in SPIE Proceedings Vol. 10396:
Applications of Digital Image Processing XL
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?