Share Email Print

Proceedings Paper

Morphology of the D/A interface in vapor deposited bilayer organic photovoltaics
Author(s): Patrick Erwin; Michael Dimitriou; Mark E. Thompson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A series of bilayer films were prepared by vacuum deposition onto Silicon substrates. These films consisted of either Si/SiO2/donor/C60 or Si/SiO2/C60/donor, where the organic films were in the 20-40 nm thick range and the donors were 7,7-difluoro-14-phenyl-7H-6l4,7l4-[1,3,2]diazaborinino[4,3-a:6,1-a']diisoindole (bDIP), copper phthalocyanine (CuPC), 3,6,11,14-tetraphenyldiindeno[1,2,3-cd:1',2',3'-lm]perylene (DBP) and 2-(4-(diphenylamino)-2,6- dihydroxyphenyl)-4-(4-(diphenyliminio)-2,6-dihydroxycyclohexa-2,5-dien-1-ylidene)-3-oxocyclobut-1-en-1-olate (DPSQ). The donors chosen here have been reported to give good power efficiencies when incorporated into bilayer photovoltaic cells with a C60 acceptor. These bilayer films were examined by neutron reflectometry to characterize the interface between the donor and C60. In the SiO2/donor/C60 films, DPSQ, CuPC, and DBP show a discrete interface with C60 while bDIP shows substantial spontaneous mixing at the interface, consistent with a donor/(donor + C60)/C60 structure, where the mixed layer is 14 nm.. In the SiO2/C60/donor films, all four donors show negligible mixing at the D/A interface consistent with a discrete D/A junction.

Paper Details

Date Published: 24 August 2017
PDF: 12 pages
Proc. SPIE 10348, Physical Chemistry of Semiconductor Materials and Interfaces XVI, 103480M (24 August 2017); doi: 10.1117/12.2273446
Show Author Affiliations
Patrick Erwin, The Univ. of Southern California (United States)
Michael Dimitriou, National Institute of Standards and Technology (United States)
Mark E. Thompson, The Univ. of Southern California (United States)

Published in SPIE Proceedings Vol. 10348:
Physical Chemistry of Semiconductor Materials and Interfaces XVI
Hugo A. Bronstein; Felix Deschler, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?