Share Email Print

Proceedings Paper

Pushing the lifetime of perovskite solar cell beyond 4500 h by the use of impermeable tin oxide electron extraction layers (Conference Presentation)
Author(s): Kai Oliver Brinkmann; Jie Zhao; Ting Hu; Tim Becker; Neda Pourdavoud; Selina Olthof; Klaus Meerholz; Lukas Hoffmann; Tobias Gahlmann; Ralf Heiderhoff; Marek Oszajca; Detlef Rogalla; Norman A. Lüchinger; Yiwang Chen; Baochang Cheng; Thomas J. Riedl

Paper Abstract

Perovskite solar cells (PSCs) suffer from decomposition of the active material in the presence of moisture or heat. In addition, the corrosion of metal electrodes due to halide species needs to be overcome.[1,2] Here, we introduce ALD-grown tin oxide (SnOx) as impermeable electron extraction layer (EEL), which affords air resilient and temperature stable MAPbI3 PSCs. Being conductive, SnOx is positioned between the metal electrode and the perovskite. Its outstanding permeation barrier properties protect the perovskite against ingress of moisture or migrating metal atoms, while simultaneously the metal electrode is protected against leaking halide compounds.[2] Therefore, SnOx is also excellently suited to sandwich and protect ultra-thin metal layers (Ag or Cu) as cost efficient Indium-free semitransparent electrodes (SnOx/metal/SnOx) in PSCs. Using photoelectron spectroscopy, we unravel the formation of a PbI2 interfacial layer between a SnOx EEL and the perovskite. The resulting interface dipole between SnOx and the PbI2 depends on the choice of oxidant for ALD (water, ozone, oxygen plasma). SnOx grown by using ozone affords hysteresis-free devices with a stable efficiency of 16.3% and a remarkably high open circuit voltage of 1.17 V.[3] Finally, we fabricated semitransparent PSCs with efficiency >11% (Tvis = 17%) and an astonishing stability > 4500h under ambient conditions (>50% RH) or elevated temperatures (60°C).[4] [1] Y. Kato et al., Adv. Mater. Interf. 2015, 2, 150019 [2] K. Brinkmann et al., Nat. Commun. 8, 13938 [3] T. Hu et al. Adv. Mat. (submitted) [4] J. Zhao et al. Adv. Energ. Mat. (in press)

Paper Details

Date Published: 19 September 2017
Proc. SPIE 10363, Organic, Hybrid, and Perovskite Photovoltaics XVIII, 1036311 (19 September 2017); doi: 10.1117/12.2272795
Show Author Affiliations
Kai Oliver Brinkmann, Bergische Univ. Wuppertal (Germany)
Jie Zhao, Bergische Univ. Wuppertal (Germany)
Nanchang Univ. (China)
Ting Hu, Bergische Univ. Wuppertal (Germany)
Nanchang Univ. (China)
Tim Becker, Bergische Univ. Wuppertal (Germany)
Neda Pourdavoud, Bergische Univ. Wuppertal (Germany)
Selina Olthof, Univ. zu Köln (Germany)
Klaus Meerholz, Univ. zu Köln (Germany)
Lukas Hoffmann, Bergische Univ. Wuppertal (Germany)
Tobias Gahlmann, Bergische Univ. Wuppertal (Germany)
Ralf Heiderhoff, Bergische Univ. Wuppertal (Germany)
Marek Oszajca, Nanograde (Switzerland)
Detlef Rogalla, Ruhr-Univ. Bochum (Germany)
Norman A. Lüchinger, Nanograde (Switzerland)
Yiwang Chen, Nanchang Univ. (China)
Baochang Cheng, Nanchang Univ. (China)
Thomas J. Riedl, Bergische Univ. Wuppertal (Germany)

Published in SPIE Proceedings Vol. 10363:
Organic, Hybrid, and Perovskite Photovoltaics XVIII
Zakya H. Kafafi; Paul A. Lane; Kwanghee Lee, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?