Share Email Print

Proceedings Paper

Development of printed large area organic transistors and integrated circuits (Conference Presentation)
Author(s): Yong-Young Noh

Paper Abstract

For at least the past 10 years, printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. In this presentation, I will give a talk on the recent progressive of my group on development of printed organic integrated circuits. I will mainly talk about on development of high performance inkjet printed unipolar and ambipolar polymer field-effect transistors (FETs), and applications to elementary organic complementary logic circuits by applying novel polymer dielectrics, new organic semiconducting and design new printing processes. In particular, we engineered and introduce new concept based for solution processed solid-state electrolyte gate insulators (SEGIs) by precise blending of P(VDF-TrFE) solution and P(VDF-HFP)-[EMIM][TFSI] gel solution resulting, after deposition of a thin film solid gate dielectric FETs, in ultrahigh field-effect mobility (μFET) and stable devices operating at low-voltage for several classes of unconventional semiconductors including -conjugated polymers, metal-oxides and other carbonaceous materials. By adding a minute amount (3% volume ratio for the optimal composition) of P(VDF-HFP)-[EMIM][TFSI] to the bulk fluorinated P(VDF-TrFE), high areal capacitance of > 4 µFcm-2 is reached thanks to the combined polarization of the -C-F interface dipoles and electrical double layers formation. To eliminate the integral complexity in differentiating field induced charge carriers from any possible carriers resulting from electrochemical doping of the semiconducting layer, we systematically measured the specific capacitance for each semiconductor/dielectric FET combination to avoid overestimation of the μFET extraction in our SEGI devices - a major common issue in several publications. For instance, with our engineered SEGIs, unprecedented hole mobility increase from ~10-2 to 5 cm2V-1s-1 (corresponding ~37 cm2V-1s-1 by commonly used method) at ≤ 2 V operation is reached in commercially available poly(3-hexylthiophene-2,5-diyl) (P3HT) FETs, and μFET exceeding 10 cm2V-1s-1 in others semiconductors.

Paper Details

Date Published: 19 September 2017
Proc. SPIE 10366, Hybrid Memory Devices and Printed Circuits 2017, 103660F (19 September 2017); doi: 10.1117/12.2271512
Show Author Affiliations
Yong-Young Noh, Dongguk Univ. (Korea, Republic of)

Published in SPIE Proceedings Vol. 10366:
Hybrid Memory Devices and Printed Circuits 2017
Emil J. W. List-Kratochvil, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?