Share Email Print

Proceedings Paper

Numerical model calculation of X-ray framing camera
Author(s): M. Koga; H. Shiraga
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

X-ray imaging is very useful to investigate a imploded core plasma in inertial fusion experiment. We can obtain many information from X-ray images, such as shape, density and temperature of a plasma. X-ray framing camera (XFC) is capable of taking two dimensional time resolved X-ray images. In previous work, we developed a numerical model of XFC to analyze its X-ray image. Calculated results agreed qualitatively with experimental results. However, it is not enough when we discuss absolute value of the signal. Moreover, in high energy laser experiment, high photon flux may cause signal depletion of XFC. This is a problem for accurate X-ray measurement. In this paper, we report our improved calculation model including signal depletion. Results using the new model shows signal depletion at high applied voltage range. The new model are evaluated by tabletop laser experiments. Calculated results using the new model agree quantitatively with experimental results.

Paper Details

Date Published: 20 February 2017
PDF: 6 pages
Proc. SPIE 10328, Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics, 103280L (20 February 2017); doi: 10.1117/12.2269495
Show Author Affiliations
M. Koga, Univ. of Hyogo (Japan)
H. Shiraga, Osaka Univ. (Japan)

Published in SPIE Proceedings Vol. 10328:
Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics
T. Goji Etoh; Hiroyuki Shiraga, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?